SENIOR PAPER: YEARS 11,12

Tournament 39, Northern Spring 2018 (O Level)
© 2018 Australian Mathematics Trust
Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. An angle bisector and an altitude emanating from the same vertex of a triangle divide the opposite side into three parts. Is it possible that a new triangle may be constructed from those three parts?
(3 points)
2. Four positive integers are given such that each of them is divisible by the greatest common divisor of the other three numbers, and the least common multiple of any three is divisible by the fourth number. Prove that the product of these four numbers is a perfect square.
(4 points)
3. Two circles Γ_{1} and Γ_{2}, with centres O_{1} and O_{2} respectively, touch externally at point T. A common tangent touches Γ_{1} at point A and Γ_{2} at point B. A common tangent to both circles at point T meets the line $A B$ at point M. Suppose $A C$ is a diameter of Γ_{1}. Prove that $C M$ and $A O_{2}$ are perpendicular to each other.
(4 points)
4. There is a checker in the corner square of an 8×8 chessboard. Petya and Vasya take turns moving the checker. Petya starts first, and on his turn he moves as a chess queen, where only the final square that the checker is moved over is considered used. Vasya on his turn makes a double move as a chess king, where both squares moved over are considered used. The checker cannot be moved over a used square. The initial square is also considered used. The player who cannot make a move loses. Who of the boys can play so that he will win for sure, no matter how his opponent moves?
(5 points)
5. A convex polyhedron is given with exactly three faces meeting at each vertex. Each face of the polyhedron is coloured red, yellow or blue. The vertices, where the faces of all three colours meet, are called multicoloured. Prove that the number of multicoloured vertices is even.

O Level Senior Paper Solutions

Edited by Oleksiy Yevdokimov and Greg Gamble

1. Solution 1. No, it is not possible. Indeed, let $C L$ be an angle bisector and $C H$ be an altitude of triangle $A B C$. Without loss of generality, assume that $\angle A<\angle B$. Then, $B C<C A$. Since point H is located on side $A B, \angle B$ is acute. Since $C L$ is an angle bisector and $\angle B C H=90^{\circ}-\angle B<90^{\circ}-\angle A=\angle A C H$, point H lies on the line segment $B L$. Furthermore, since $C L$ is an angle bisector, we have

$$
\frac{B L}{L A}=\frac{B C}{C A}<1 \quad \text { which implies } \quad B L<L A
$$

Since $B H+H L=B L$, it follows that $B H+H L<L A$, so that $B H, H L$ and $L A$ do not satisfy the Triangle Inequality. Thus, it is not possible to construct a new triangle from those three parts.

Solution 2. No, it is not possible. Indeed, let $C M$ be a median of triangle $A B C$. Since for an altitude, angle bisector and median emanating from the same vertex of a triangle, the angle bisector is located between the median and altitude, we get

$$
L A>M A=B M>B H+H L
$$

which means that the Triangle Inequality is not satisfied by the line segments $B H$, $H L$ and $L A$. So, it is not possible to construct a new triangle from those three parts.

2. Let the four numbers be a, b, c and d. We claim that each prime number p has an even exponent in the prime factorisation of the product $a b c d$. Indeed, suppose p has exponents α, β, γ and δ in the respective prime factorisations of a, b, c and d. Without loss of generality, assume $\alpha \geq \beta \geq \gamma \geq \delta$. Since d is divisible by
$\operatorname{gcd}(a, b, c)$, we have $\delta \geq \min \{\alpha, \beta, \gamma\}=\gamma$. Hence, $\gamma=\delta$. Since $\operatorname{lcm}(b, c, d)$ is divisible by a, we have $\beta=\max \{\beta, \gamma, \delta\} \geq \alpha$. Hence, $\alpha=\beta$.
Thus, each prime number p has exponent $2 \alpha+2 \delta=2(\alpha+\delta)$ in the prime factorisation of the product $a b c d$. As a consequence, $a b c d$ is a perfect square.
3. Solution 1. Let r_{1} and r_{2} be the radii of the circles Γ_{1} and Γ_{2}, respectively. Let P be the foot of the perpendicular dropped from point O_{1} onto $B O_{2}$. Since $O_{1} O_{2}=r_{1}+r_{2}$ and $P O_{2}=r_{2}-r_{1}$ in right-angled triangle $O_{1} P O_{2}$, by Pythagoras' Theorem we have

$$
O_{1} P=\sqrt{\left(r_{1}+r_{2}\right)^{2}-\left(r_{2}-r_{1}\right)^{2}}=2 \sqrt{r_{1} r_{2}}
$$

Since $A B P O_{1}$ is a rectangle, $A B=O_{1} P=2 \sqrt{r_{1} r_{2}}$.

Since $A B$ and $M T$ are tangents to both Γ_{1} and $\Gamma_{2}, M A=M T=M B$, and since $M A+M B=A B$,

$$
M A=M B=M T=\frac{1}{2} A B=\sqrt{r_{1} r_{2}}
$$

Thus,

$$
\frac{C A}{M A}=\frac{2 r_{1}}{\sqrt{r_{1} r_{2}}}=\frac{2 \sqrt{r_{1} r_{2}}}{r_{2}}=\frac{A B}{B O_{2}}
$$

and hence right-angled triangles $C A M$ and $A B O_{2}$ are similar.
Since $A C$ and $A B$ are perpendicular, $A M$ and $B O_{2}$ are also perpendicular, and, therefore, hypotenuses $C M$ and $A O_{2}$ of the two similar triangles are perpendicular to each other. The proof is complete.
Solution 2. Let X be the point of intersection of the line segment $A O_{2}$ with Γ_{1}. Then, $\angle A X C=90^{\circ}$ as subtended by diameter of Γ_{1}. Thus, it is sufficient to prove that points C, X and M lie on a straight line, which is equivalent to showing that $\angle M X O_{2}=90^{\circ}$.
Since $\angle C T A$ is subtended at circumference of O_{1} by its diameter, and $M A=$ $M B=M T$ being equal line segments of tangents from the same point imply that $A B$ is the hypotenuse of the circumcircle of $A T B$,

$$
\angle C T A=\angle A T B=90^{\circ} .
$$

Hence $\angle C T A+\angle A T B=180^{\circ}$ and so C, T and B are collinear. Thus,

$$
\begin{aligned}
\angle T X O_{2} & =\angle T C A, \text { since } A X T C \text { is cyclic } \\
& \left.=\angle T B O_{2} \text { (alternating angles, since } A C \| B O_{2}\right)
\end{aligned}
$$

Therefore, $T X B O_{2}$ is cyclic. Also, since $\angle M T O_{2}$ and $M B O_{2}$ are right angles, they are supplementary, and hence $M T B O_{2}$ is cyclic and consequently T, X, B, O_{2} and M are concyclic. Therefore, $\angle M X O_{2}=\angle M T O_{2}=90^{\circ}$ and we are done.

Solution 3. Since $A M T O_{1}$ and $B M T O_{2}$ are kites, $M O_{1}$ and $M O_{2}$ are angle bisectors of triangles $A M T$ and $B M T$ respectively, which means $\angle O_{1} M O_{2}=90^{\circ}$. Thus, $\angle A M O_{1}=\angle B O_{2} M$ with right-angled triangles $A M O_{1}$ and $B O_{2} M$ being similar. Therefore, there exists a mapping transforming triangle $A M O_{1}$ into $B O_{2} M$ that includes rotation onto 90°, parallel move and dilation. Thus, O_{1} as the midpoint of $A C$ moves into M and M as the midpoint of $A B$ moves into O_{2} which also means that C moves into A. So a line segment $C M$ moves into $A O_{2}$ with the angle between them being equal to the angle of the rotation, which is 90°. This completes the proof.

4. Vasya can win for sure, no matter how his opponent moves. An 8×8 chessboard without the corner square can be divided into 3 -square corners - to do so we place one corner around the absent corner square with all other squares to be covered
by ten 3×2 rectangles, where each rectangle is formed by two 3 -square corners. Vasya's strategy is to make both moves within a 3 -square corner where Petya has moved to. Then, every time before Petya's move each 3-square corner is either entirely open for moves or already closed. Thus, Vasya can always make his two moves. Since, the game is finite, Vasya will win for sure.

Note. A square board of the size $2^{n} \times 2^{n}$ without the corner square can be divided into 3 -square corners. This can be proven by induction. The problem above is a particular case of $n=3$ with no need to prove the general case, if a construction for the 8×8 board is provided.
5. Solution 1. We call an edge red-yellow if it borders both a red face and a yellow face. Consider a multicoloured vertex u. There is exactly one red-yellow edge (call it e_{1}) emanating from u. Let the other end point of e_{1} be v. At v, (the same) red and yellow faces meet. If the third face incident with v is blue, then v is also multicoloured, and no further red-yellow edges emanate from v. Otherwise, another red-yellow edge (call it e_{2}) emanates from v. Now move along e_{2} and repeat the process. Continuing in this way, sooner or later we come to a multicoloured vertex since we cannot return to the vertices we have already passed. Thus, all multicoloured vertices can be divided into pairs as the ends of red-yellow edges.
Solution 2. We claim that with re-colouring of faces the parity of the quantity of multicoloured vertices does not change. If so, a convex polyhedron can be made of one colour and the statement of the problem is then obviously true. Indeed, let us re-colour some red face yellow. Then, for the two other faces incident with the re-coloured face at a vertex we match such a pair of the two faces with that vertex. The vertex will change its multicolourness, from yes to no or vice versa, if and only if such a vertex matches to a pair of faces which are blue and non-blue. Since there are an even number of such pairs, we conclude that the number of multicoloured vertices is even.

